

TRUE RMS DIGITAL INSULATION MULTIMETER MODEL KM 877

An ISO 9001:2008 Company

SPECIAL FEATURES:

- VFD V & Hz readings.
- Paper-White Backlight LCD Display
- Record MAX / MIN readings.
- Display Hold Function.
- Dual Digital Display.
- PI & DAR Function.
- · Autoranging.

• Pass /Fail Insulation Resistance Compare function; 12 selectable Preset Values.

- LOCK-Test mode for Insulation Resistance & Earth Continuity Test.
- BeepJack[™] audible & visible input warning.
- Remote Probe for insulation Resistance & Earth Continuity Test.

23 Functions 73 Ranges

Preliminary Data

GENERAL SPECIFICATIONS:

- * Sensing: AC, True RMS
- Display: 3-5/6 digits 6000 Counts Backlight LCD Display.
- Polarity: Automatic
- * Update Rate: 5 per second nominal
- * 61 Segments Analog Bar Graph: 60 per second max.
- * Power Supply: Four Alkaline AA batteries
- * Power Consumption: 4.5mA typical except : ACV *Hz & VFD ACV *Hz : 7.0mA

Earth Continuity Test: 110mA @ 20Ω range, 220mA @ 2.0Ω range.

Tester can perform at least 3000 Earth Continuity Test measurements with new alkaline batteries at room temperature. These are standard test of 1Ω with a duty cycle of 5 seconds on & 25 seconds off.

Insulation Resistance @ 1mA Test Current :

50V output Voltage: 25mA, 100V output Voltage: 45mA 250V output Voltage: 85mA, 500V output Voltage: 170mA 1000V output Voltage: 440mA

Tester can perform at least 950 Insulation Tests with new alkaline batteries at room temperature. These are standard tests of 1000V into $1M\Omega$ with a duty cycle of 5 seconds on and 25 seconds off.

- * Operating Temperature : -10°C ~ 40°C
- Relative Humidity: Maximum relative humidity 90% for temperature up to 28°C decreasing linearly to 50% relative humidity at 40°C.
- Pollution degree: 2
- IP Rating: IP40
- Storage Temperature: -20°C ~ 60°C, < 80% R.H. (with battery removed)
- Altitude: Operating below 2000m
- Temperature Coefficient: Nominal 0.15 x (specified accuracy)/ °C @(-10°C~18°C or 28°C~40°C), or otherwise specified.
- * Low Battery: approx. 4.6V
- * APO Timing: Idle for 20 minutes
- APO Consumption: 50μA typical
- Auto or Manual-ranging mode.
- Auto Power Off.
- Dimension: 208(L) X 103(W) X 64.5(H) mm with holster
- Weight: 635 gm with holster.

- * Safety: Double insulation per IEC/UL/EN61010-1 Ed. 3.0, IEC/EN61010-2-030 Ed. 1.0, IEC/EN61010-2-033 Ed. 1.0, IEC/UL/EN61010-031 Ed. 1.1 and CAN/CSA-C22.2 No. 61010-1-12 Ed. 3.0 to CAT III 1000 V AC & DC and CAT IV 600V AC & DC.
- * Compliance to IEC/EN61557; 2007 (per CE requirements, not certified by UL or ETL): IEC/EN61557-1, IEC/EN61557-2 & IEC/EN61557-4 where applicable.
- * E.M.C.: Meets EN61326-1:2006 (EN55022, EN61000-3-2, EN61000-3-3, EN61000-4-2, EN61000-4-3,

EN61000-4-4, EN61000-4-5, EN61000-4-6, EN61000-4-8, EN61000-4-11)

In an RF field of 3V/m:

Total Accuracy = Specified Accuracy + 25 digits. Performance above 3V/m is not specified.

Transient Protection: 8KV(1.2/50µS Surge)

Overload Protections:

Earth Continuity Test : 0.25A/1KV, IR 30kA or better

> : 1100Vrms mV, Ω & Others : 1000 Vrms

ACCESSORIES: Test probe pair, BRP21S2-C Remote probe, Alligator clip pair, Holster, User manual & Carrying Case.

OPTIONAL ACCESSORIES: Magnetic hanger.

All Specifications are subject to change without prior notice

ELECTRICAL SPECIFICATIONS: KM 877

Accuracy is ± (% of reading digits + number of digits) or otherwise specified, at 23°C ± 5°C & less than 80% relative humidity.

True RMS voltage & current accuracies are specified from 1 % to 100 % of range or otherwise specified.

Maximum Crest Factor < 1.70:1 at full scale & < 3.4:1 at half scale, and with frequency components fall within the specified frequency bandwidth for non-sinusoidal waveforms.

DC VOLTAGE

Range	Resolution	Accuracy
6.000 V	1 mV	
60.00 V	10 mV	±(0.2%rdg + 3dgts)
600.0 V	100 mV	
1000 V	1 V	±(0.3%rdg + 3dgts)

Input Impedance : $10M\Omega$, 110pF nominal

VFD AC VOLTAGE

Range	Resolution	Accuracy ¹⁾		
10Hz ~ 45Hz				
600.0 V	100 mV	±(4%rdg + 5dgts)		
45Hz ~ 200Hz				
600.0 V	100 mV ±(2%rdg + 5dg			
200Hz ~ 440Hz				
600.0 V	100 mV	±(7%rdg + 5dgts ²⁾)		

¹⁾ Unspecified for fundamental frequency > 440Hz

EARTH CONTINUITY TEST

Range	Test Current	Accuracy	Measuring Range ¹⁾
2.000 Ω	> 200 mA	±(1.5%rdg	$0.015\Omega \sim 2.199\Omega$
20.00 Ω	> 90 mA	+3dgts)	0.15Ω ~ 21.99Ω

Open Circuit Voltage : > 4VDC

Live Circuit Detector: Inhibit test if terminal voltage > 2V prior to

initialization of test.

INSULATION RESISTANCE

Test Voltage ¹⁾	Range	Test Current	Accuracy
50 V	3.000M Ω , 30.00M Ω , 55.0M Ω	1mA @50kΩ	
100 V	3.000MΩ, 30.00 MΩ, 110.0 MΩ	1mA @100kΩ	
250 V	3.000 Μ Ω , 30.00 Μ Ω , 275.0 Μ Ω	1mA @250kΩ	±(1.5%rdg + 5dgts)
500 V	3.000Μ $Ω$, 30.00 Μ $Ω$, 300.0 Μ $Ω$, 550.0 Μ $Ω$	1mA @500kΩ	
	3.000MΩ, 30.00 MΩ, 300.0 MΩ		±(1.5%rdg + 5dgts)
1000 V	3000ΜΩ	1mA @1MΩ	±(2.0%rdg + 5dgts)
	25.0GΩ		±(10%rdg + 5dgts)

¹⁾ Actual output voltage: 100% ~ 120% of Test Voltage

Live Circuit Detector : Inhibit test and display voltage reading instead if terminal voltage > 30V prior to initialization of test.

Display Voltage Accuracy: DCV: 1.5% + 5d;

ACV: 3.0% + 5d @50Hz ~60Hz (unspecified @ >600Vac)

Specified measuring range is $0.020M\Omega....25.0G\Omega$ for percentage operating uncertainly B(%) \leq \pm 30% per IEC/EN61557-2 requirements.

DIODE TESTER

DIODE LESTER				
Range	Resolution	Accuracy ¹⁾		
2.000 V	1 mV	±(1.5%rdg + 4dgts)		

Test Current: 0.5mA typically Open Circuit Voltage: < 2.8VDC typically

AC VOLTAGE

Range	Resolution	Accuracy	
50Hz ~ 60Hz			
6.000 V	1 mV		
60.00 V	10 mV	±(1%rdg + 3dgts)	
600.0 V	100 mV		
1000 V	1 V		
60Hz ~ 1kHz			
6.000 V	1 mV		
60.00 V	10 mV	±(2%rdg + 3dgts)	
600.0 V	100 mV	±(2/mag / 3agis)	
1000 V	1 V		
1kHz ~ 3kHz		•	
6.000 V	1 mV	±(2%rdg + 3dgts)	
60.00 V	10 mV	1(2 /61dg + 3dgts)	
600.0 V	100 mV	Unspecified	
1000 V	1 V	Onspecified	
3kHz ~ 5kHz			
6.000 V	1 mV	±(4%rdg + 5dgts)	
60.00 V	10 mV	±(4 /01ug + Jug(s)	
600.0 V	100 mV	Unspecified	
1000 V	1 V	Onspecified	

Input Impedance: 10MΩ, 110pF nominal

RESISTANCE

Range	Resolution	Accuracy
600.0Ω	100 mΩ	±(0.9%rdg + 5dgts)
6.000kΩ	1 Ω	
60.00kΩ	10 Ω	±(0.9%rdg + 2dgts)
600.0kΩ	100 Ω	
6.000ΜΩ	1 kΩ	±(1.2%rdg + 3dgts)
60.00MΩ	10 kΩ	±(3.0%rdg + 6dgts)

Open Circuit Voltage: < 1.5VDC typical

~ Hz Line Level Frequency

Function R	Function Range		ivity RMS)	Range	
6	V	0.6	V	10Hz ~ 20kHz	
60	V	6	V	TUHZ ~ ZUKHZ	
600	V	60	V	10Hz ~ 3kHz	
1000	٧	600	V	10HZ ~ 3KHZ	
VFD 600	V	60~240 V ¹⁾		10Hz ~ 440Hz	

Accuracy: ±(0.02%rdg + 4dgts)

AUDIBLE CONTINUITY TESTER

Audible Threshold	Between 20Ω and 200Ω		
Response Time	< 30ms approx.		

All Specifications are subject to change without prior notice

G-17, Bharat Industrial Estate, T. J. Road, Sewree (W), Mumbai - 400 015. INDIA.

Sales Direct.: 022-24156638 Tel.: 022-24124540, 24181649, Fax: 022-24149659

Email: kusam_meco@vsnl.net, Website: www.kusamelectrical.com

 $^{^{2}}$ Accuracy linearly decreases from 2% + 5d @ 200Hz to 7% + 5d @ 440Hz **Input impedance**: 10M Ω , 110pF nominal.

¹⁾Specified measuring range at percentage operating uncertainly B(%)

 $[\]leq$ ± 30% per IEC/EN61557-4 requirements.

¹⁾ VFD sensitivity linearly decreases from 10% F.S. @200Hz to 40% F.S. @440Hz.

USE TRUE RMS WHEN MEASURING AC WAVEFORMS

The waveforms on today's AC power lines are anything but clean. Electronic equipment such as office computers, with their switching power supplies, produce harmonics that distort power-line waveforms. These distortions make measuring AC voltage inaccurate when you use an averaging DMM.

Average voltage measurements work fine when the signal you're measuring is a pure sine wave, but errors mount as the waveform distorts. By using true RMS measurements, however, you can measure the equivalent heating effect that a voltage produces, including the heating effects of harmonics. Table 1 shows the difference between measurements taken on averaging DMMs & those taken on true RMS DMMs. In each case, the measured signal's peak-to-peak value is 2V. Therefore, the peak value is 1V.

For a 1-V peak sine wave, the average & RMS values are both 0.707V. But when the input signal is no longer a sine wave, differences between the RMS values & the average readig values occur. Those errors are most prominent when you are measuring square waves & pulse waveforms, which are rich in harmonics.

Table 1. Average versus true RMS comparison of typical waveforms.

Waveform	Actual Pk-Pk	True RMS Reading	Average Reading	Reading Error
Sine Wave	2.000	0.707	0.707	0%
Triangle Wave	2.000	0.577	0.555	-3.8%
Square Wave	2.000	1.000	1.111	+11.1%
Pulse (25% duty Cycle)	2.000	0.433	0.416	-3.8%
Pulse (12.5% duty Cycle)	2.000	0.331	0.243	-26.5%
Pulse (6.25% duty Cycle)	2.000	0.242	0.130	-46.2%

One limitation to making true RMS measurements is crest factor, and you should consider crest factor when making AC measurements. Crest factor is the ratio of a waveform's peak ("crest") voltage to its RMS voltage. Table 2 shows the crest factors for ideal waveforms.

Table 2. Crest factors of typical waveforms.		
Waveform Crest Factor		
DC	1.000	
Square Wave	1.000	
Sine Wave	1.414	
Triangle Wave	1.732	
Pulse (25% duty Cycle)	1.732	
Pulse (12.5% duty Cycle)	2.646	
Pulse (6.25% duty Cycle) 3.873		

A DMM's specifications should tell you the maximum crest factor that the meter can handle while maintaining its measurement accuracy. True RMS meters can handle higher crest factors when a waveform's RMS voltage is in the middle of the meter's range setting. Typically, a DMM may tolerate a crest factor of 3 near the top of its scale but it might handle a crest factor of 5 that's in the middle of the range. Therefore, if you're measuring waveforms with high crest factors (greater than 3), you should adjust the DMM so the measured voltage is closest to the center of the measurement range.

Another limitation of true RMS is speed. If you're measuring relatively clean sine waves, then you can save time & money by using as averaging DMM. True RMS meters cost more than averaging meters and can take longer to produce measurements, especially when measuring millivolt-level AC signals. At those low levels, true RMS meters can take several seconds to stabilize a reading. Averaging meters won't leave you waiting.